3.294 \(\int \frac {(e \csc (c+d x))^{3/2}}{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=145 \[ -\frac {2 e \csc ^2(c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {4 e \cos (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}+\frac {2 e \cot (c+d x) \csc (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {4 e \sqrt {\sin (c+d x)} E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {e \csc (c+d x)}}{5 a d} \]

[Out]

-4/5*e*cos(d*x+c)*(e*csc(d*x+c))^(1/2)/a/d+2/5*e*cot(d*x+c)*csc(d*x+c)*(e*csc(d*x+c))^(1/2)/a/d-2/5*e*csc(d*x+
c)^2*(e*csc(d*x+c))^(1/2)/a/d+4/5*e*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(co
s(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*(e*csc(d*x+c))^(1/2)*sin(d*x+c)^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3878, 3872, 2839, 2564, 30, 2567, 2636, 2639} \[ -\frac {2 e \csc ^2(c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {4 e \cos (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}+\frac {2 e \cot (c+d x) \csc (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {4 e \sqrt {\sin (c+d x)} E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {e \csc (c+d x)}}{5 a d} \]

Antiderivative was successfully verified.

[In]

Int[(e*Csc[c + d*x])^(3/2)/(a + a*Sec[c + d*x]),x]

[Out]

(-4*e*Cos[c + d*x]*Sqrt[e*Csc[c + d*x]])/(5*a*d) + (2*e*Cot[c + d*x]*Csc[c + d*x]*Sqrt[e*Csc[c + d*x]])/(5*a*d
) - (2*e*Csc[c + d*x]^2*Sqrt[e*Csc[c + d*x]])/(5*a*d) - (4*e*Sqrt[e*Csc[c + d*x]]*EllipticE[(c - Pi/2 + d*x)/2
, 2]*Sqrt[Sin[c + d*x]])/(5*a*d)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2567

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(a*Cos[e +
 f*x])^(m - 1)*(b*Sin[e + f*x])^(n + 1))/(b*f*(n + 1)), x] + Dist[(a^2*(m - 1))/(b^2*(n + 1)), Int[(a*Cos[e +
f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Intege
rsQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2839

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 3878

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Dist[g^Int
Part[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p], Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x],
x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {(e \csc (c+d x))^{3/2}}{a+a \sec (c+d x)} \, dx &=\left (e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {1}{(a+a \sec (c+d x)) \sin ^{\frac {3}{2}}(c+d x)} \, dx\\ &=-\left (\left (e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {\cos (c+d x)}{(-a-a \cos (c+d x)) \sin ^{\frac {3}{2}}(c+d x)} \, dx\right )\\ &=\frac {\left (e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {\cos (c+d x)}{\sin ^{\frac {7}{2}}(c+d x)} \, dx}{a}-\frac {\left (e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {\cos ^2(c+d x)}{\sin ^{\frac {7}{2}}(c+d x)} \, dx}{a}\\ &=\frac {2 e \cot (c+d x) \csc (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}+\frac {\left (2 e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sin ^{\frac {3}{2}}(c+d x)} \, dx}{5 a}+\frac {\left (e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{x^{7/2}} \, dx,x,\sin (c+d x)\right )}{a d}\\ &=-\frac {4 e \cos (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}+\frac {2 e \cot (c+d x) \csc (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {2 e \csc ^2(c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {\left (2 e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}\right ) \int \sqrt {\sin (c+d x)} \, dx}{5 a}\\ &=-\frac {4 e \cos (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}+\frac {2 e \cot (c+d x) \csc (c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {2 e \csc ^2(c+d x) \sqrt {e \csc (c+d x)}}{5 a d}-\frac {4 e \sqrt {e \csc (c+d x)} E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{5 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.39, size = 230, normalized size = 1.59 \[ \frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) (e \csc (c+d x))^{3/2} \left (-\frac {6 \tan (c+d x) \left (\sec ^2\left (\frac {1}{2} (c+d x)\right )+4 \sec (c) \cos (d x)\right )}{d}+\frac {8 \sqrt {2} e^{i (c-d x)} \sqrt {\frac {i e^{i (c+d x)}}{-1+e^{2 i (c+d x)}}} \left (\left (1+e^{2 i c}\right ) e^{2 i d x} \sqrt {1-e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};e^{2 i (c+d x)}\right )-3 e^{2 i (c+d x)}+3\right ) \sec (c+d x)}{\left (1+e^{2 i c}\right ) d \csc ^{\frac {3}{2}}(c+d x)}\right )}{15 a (\sec (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Csc[c + d*x])^(3/2)/(a + a*Sec[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]^2*(e*Csc[c + d*x])^(3/2)*((8*Sqrt[2]*E^(I*(c - d*x))*Sqrt[(I*E^(I*(c + d*x)))/(-1 + E^((2*I)
*(c + d*x)))]*(3 - 3*E^((2*I)*(c + d*x)) + E^((2*I)*d*x)*(1 + E^((2*I)*c))*Sqrt[1 - E^((2*I)*(c + d*x))]*Hyper
geometric2F1[1/2, 3/4, 7/4, E^((2*I)*(c + d*x))])*Sec[c + d*x])/(d*(1 + E^((2*I)*c))*Csc[c + d*x]^(3/2)) - (6*
(4*Cos[d*x]*Sec[c] + Sec[(c + d*x)/2]^2)*Tan[c + d*x])/d))/(15*a*(1 + Sec[c + d*x]))

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {e \csc \left (d x + c\right )} e \csc \left (d x + c\right )}{a \sec \left (d x + c\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*csc(d*x+c))^(3/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral(sqrt(e*csc(d*x + c))*e*csc(d*x + c)/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \csc \left (d x + c\right )\right )^{\frac {3}{2}}}{a \sec \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*csc(d*x+c))^(3/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((e*csc(d*x + c))^(3/2)/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

maple [C]  time = 1.29, size = 799, normalized size = 5.51 \[ -\frac {\left (-1+\cos \left (d x +c \right )\right ) \left (4 \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {-\frac {i \cos \left (d x +c \right )-i-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )-2 \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {-\frac {i \cos \left (d x +c \right )-i-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )+8 \cos \left (d x +c \right ) \sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {-\frac {i \cos \left (d x +c \right )-i-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}-4 \cos \left (d x +c \right ) \sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {-\frac {i \cos \left (d x +c \right )-i-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}+4 \sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {-\frac {i \cos \left (d x +c \right )-i-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}-2 \sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {-\frac {i \cos \left (d x +c \right )-i-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (d x +c \right )-i+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}-2 \cos \left (d x +c \right ) \sqrt {2}-3 \sqrt {2}\right ) \left (\frac {e}{\sin \left (d x +c \right )}\right )^{\frac {3}{2}} \sqrt {2}}{5 a d \sin \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*csc(d*x+c))^(3/2)/(a+a*sec(d*x+c)),x)

[Out]

-1/5/a/d*(-1+cos(d*x+c))*(4*cos(d*x+c)^2*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((I*cos(d*x+c)-I+sin(d*x+c))/si
n(d*x+c))^(1/2)*(-(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticE(((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x
+c))^(1/2),1/2*2^(1/2))-2*cos(d*x+c)^2*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((I*cos(d*x+c)-I+sin(d*x+c))/sin(
d*x+c))^(1/2)*(-(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticF(((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c
))^(1/2),1/2*2^(1/2))+8*cos(d*x+c)*((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(I*cos(d*x+c)-I-sin(d*x+c)
)/sin(d*x+c))^(1/2)*EllipticE(((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-I*(-1+cos(d*x+c))/
sin(d*x+c))^(1/2)-4*cos(d*x+c)*((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(I*cos(d*x+c)-I-sin(d*x+c))/si
n(d*x+c))^(1/2)*EllipticF(((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-I*(-1+cos(d*x+c))/sin(
d*x+c))^(1/2)+4*((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c))^(1/2)
*EllipticE(((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)-2
*((I*cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticF(((I*
cos(d*x+c)-I+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)-2*cos(d*x+c)*2^(
1/2)-3*2^(1/2))*(e/sin(d*x+c))^(3/2)/sin(d*x+c)*2^(1/2)

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*csc(d*x+c))^(3/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\cos \left (c+d\,x\right )\,{\left (\frac {e}{\sin \left (c+d\,x\right )}\right )}^{3/2}}{a\,\left (\cos \left (c+d\,x\right )+1\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e/sin(c + d*x))^(3/2)/(a + a/cos(c + d*x)),x)

[Out]

int((cos(c + d*x)*(e/sin(c + d*x))^(3/2))/(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\left (e \csc {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*csc(d*x+c))**(3/2)/(a+a*sec(d*x+c)),x)

[Out]

Integral((e*csc(c + d*x))**(3/2)/(sec(c + d*x) + 1), x)/a

________________________________________________________________________________________